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ABSTRACT

Calculations are made to estimate, as a function of distance, the radiation

dose levels which would occur during full capacity operation of the ArvW Pulse

Reactor Assembly (APRA) scheduled for construction at Aberdeen Proving Ground,

Maryland. Calculations of the neutron dose are de by two methods. The first

calculation (Method A) is made by utilizing an experimentally determined

effective dose mean free path, which probably includes the effect of ground

scattering. The second calculation (Method B) is made by utilizing the result

of a Monts Carlo calculation of neutron transmission in air. The results of

this calculation indicate considerably higher dose levels than indicated by

Method A. Experimental data are available which substantiate the result of

Method A. The gum dose at distances of interest is found to be unimportant

when considered in light of the uncertainty in the neutron dose.
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I. INTRODUCTION

In order to determine the degree to which operation of the Army Pulse

Reactor Assembly (APRA) at the proposed Aberdeen Proving Ground site will

disrupt other nearby activities, it is necessary to calculate the radiation

dose which will be delivered at various distances from the nuclear reactor.

In the case of an unshielded reactor such as APRA, the exclusion area

will be determined by the dose produced by radiation emanating from the reactor.

The proposed site is in the industrial area of the Proving Ground. Access to

this area by the public and by all Aberdeen Proving Ground employees except

those who have industrial area passes is restricted. The following proposals have

been made to further restrict access to the reactor site and, at the same time,

to provide adequate protection to insure the safety of persons not directly

under the administrative control of the reactor staff.

a. There should be a barbed wire fence with appropriate signs attached

at a distance such that the maximum weekly dose outside of this fence is 10 torem.

b. There should be a security fence (6 or 8 foot fence with barbed wire

barrier on top) at a distance such that the maximum daily dose outside of this

fence is 10 rem.

Members of the Hazards Evaluation Branch of the AEC have indicated that

these restrictions would probably be considered adequate for exclusion of "non-

occupational" personnel.

II. CAILULATION OF NETIRON DOSE

The Godiva II neutron* leakage spectrum is used as a source model for the

calculation by Method B. See Reference 1. This spectrum is included as

Figure 1. The total source is assumed to be 80 x 1017 fissions, and the number

of leakage neutrons per fission is assumed to be 1.4 (Reference 2, p. 9). This

source is equivalent to 40 pulses per week at 2 x 1017 fissions per pulse.

2 x 1017 fissions is the probable maximum yield which the APRA will deliver

in one pulse. The dose-distance calculation has been made by two different

methods.

*The y dose 1s estimated at about 2 per cent of the neutron dose at distances of
interest. See Section III.
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A. Method A

A simplified recipe for calculating the dose in air at several mean

free paths from a neutron source has been proposed (Reference 3). The proposed

method is as follows: (1) Use an infinite mean free path (no absorption) for

the first 300 feet. (2) Use a mean free path of 212 yards from 300 feet on out.

Changes in air density would cause, presumably, a change in mean free path.

A calculation was made using the above method with an infinite mean free

path for the first 100 meters. This method predicts 10 mrem/wk at 1110

meters (1215 yards).

B. Method B

A more complex calculation was made using the data presented by Mehl

(Reference 4). Mehl gives dose-distance data in air for nine monoenergetic

sources. The Godiva spectrum was approximated by building up a spectrum composed of
the nine monoenergetic sources given by Mehl. An appropriate number of neutrons

was assigned to each source according to the number of neutrons of the Godiva

spectrum in the energy range corresponding to monoenergetic source. For each

of the nine monoenergetic sources, Reference 4 gives the number of neutrons
of a given energy at various distances from the source. For instance if one is

interested in finding the dose received at 1000 meters from a source of 1 Mev

neutrons, data are given to enable one to determine the number of neutrons in

each of several energy ranges. The neutron dose at a distance R is determined

by accumulating the number of neutrons arriving at R in each energy range from

all source energies. The number of neutrons of a given energy required to

make one rem is given in Reference 5. These data are presented in Figure 2.

A sample calculation (with R = 1500 meters) is given on pages 6 and 7. The
calculation is based on a total source of one neutron. Source neutron

energies are distributed as indicated in Figure 1. Symbols used are defined

as follows:

i - subscript used to denote source neutron energy.

&Ei - Energy range of the source neutrons

Fi - Fraction of the source neutrons in energy range Ai as determined
from Figure 1.

9
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R - Range (distance) from the source in cm.

j - Subscript used to denote neutron energy range at R.

AE i - Energy range of the neutrons at R

Nij - Number of neutrons per square cm at R in energy range 6Z which

started with a source energy in AZEi (assuming total source of one

neutron)

C - Conversion factor for determining the number of neutrons/cm2 of

energies AEj necessary to make one rem.

D - Neutron dose at R due to neutrons with energies in energy range A.

The air density used by Mehl is 1.07 grams/liter. The mean July air conditions

for APG are as follows:

T = 240 C
avg

B = 761.5 mHg

Rel. Hum = 71 per cent

These conditions indicate a mean July (when the monthly mean density is

lowest) density of 1.181 grams/liter. A density correction is applied according

to the following formulas:

I IR, = p2 R 2
D PR (PR P

D1( 1 1) 1 2 D2(?2

where p = air density

R = distance from the source

D a dose

In the calculation above, we have R = 1500 meters, D1 - 2.42 x 10" 2 1 re/source

neutron, P1 - 1.07 grams/lite,P 2 - 1.181 grams/liter. Using these values in

the above equations, one gets: •2  1359 meters, D2 - 2.95 x 1O' 2 1 ren/source

neutron (1.4 source neutrons/fission) - 4.13 x 10"21 rem/fission. Additional

dose-distance data are shown in tabular form in Table II and in graphical

form in Figure 3. The "inverse square loss only" curve is shown for comparison
purposes only.
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?AUX I (Continued)

~iji C D1 2
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C. Tabulation of results

Dose-Distance Data for Neutrons

Cale. Method Range Dose

'I r (r-7fission)

A 960 3.75 x 1o -2

A 550 9.41 x-1o-20

A 200 4.31 x 1o018

B 1359 4.13 x 102

B 906 6.83 x 1o'20

B 272 7.00 x 10"18

S1200 2.02 x 10"19

C 900 3.58 x 10"19

C 500 1.16 x 10"18

C 300 3.23 x 10"18

C 18o 8.96 x 10-18

C(and A) 0oo 2.90 x 1o"17

In addition to the above data there are some experimental data aivilable

frou the Sandia Pulse Reactor. The followin data are reported (Reference 14)

for the reactor operated at the outdoor site.

n Dose
Tp~a)(rA1imsion)

250 8 x 117

1750 5 x 1o6 0

These data ages very closely with calculation A as show In Figur*e3.

OCaloulated dose assuming no attenuation other than Inverse, squo lUos.

15



III. CALCULATION OF GAMMA DOSE

A. Fission Gammas

The total fission gamma source (delayed plus prompt) ;is assumed to be

13.1 Mev/fission. See Reference 6, p. 336. The distribution of gammas is

taken as n(E) = A exp-cE where c = 1.16 after Reference 7. By setting

A = c , one normalizes the distribution to a total source of 1 14ev. Note

that the average energy is
- P E n(E)dE

E = 1

f n(E)dE
0

If c = 1.16, o = 0.86 Mev. For prompt gammas, c is sometimes taken as - 1.4

(e.g., Reference 7; also the estimated slope of the straight line drawn through

data of Figure 2, Reference 6 is such that c = 1.4). This gives i for prompt.

gammas of = .7 Mev. However, Reference 6, p. 369 gives, for prompt gammas in
the energy range .3 to 10 Mev, 7.2 + 0.8 Mev/fission carried by 7.4 + 0.8

photons/fission, or an E of-• 1.0. By manipulation of data presented in Reference
6, one finds that Et= 0.95 Mev averaged over fission gammas emitted promptly,

short delayed and long time delayed. If E t- 0.95 Mev, the calculations given here
indicate a gamma dose which is too small by 5 to 10 percent when one takes into

account the fact that the nitrogen capture gamma dose is dominant at large distances.
Since it will be shown that the gamma dose is small in comparison with the neutron
dose for the situation under consideration, no further attempt will be made to

resolve this apparent contradiction.

Using the distribution n(E) = 13.1 c2 exp. -E, the energy range 0 to 8 Nev
is broken down into energy groups of 1/2 Mev width as shown in Table III. The

number of gammas in each group, nio, is assigned the median energy of the energy

range, Ei.

ni f2 n(E)dE = 13.1 c [exp. (-cE l )- exp ("cE 2 j]nio =E1

The number of photons in each energy group (nio) is then attenuated according

to the formula

ni(f.p.) - n 0 Bo(psZ0E) exp(-Isz)

16
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where BE(%sZE) is the energy buildup factor for a plane monodirectional gama

source in uranium obtained from Reference 8, p. 146. n (f.P.) is the number

of photons due to fission products in energ group i which escape from the

reactor. ILs(E)Z is the "effective" number of relaxation lengths for the

photon energy E. This factor takes into account the fact that many of the

photons produced are absorbed in the reactor core itself. The relationship

between the number of source radius relaxation lengths, p (E)d, and the

"effective" number of relaxation lengths is given in Reference 9, P. 73.

The radius of the reactor core, d, is assumed to be 4.5 inches of which 7

percent (of the radius) is gaseous coolant channel which we will assume to be

non-attenuating. These values were estimated from data given in Reference 10,

p. 42. The reactor core is 90 percent U and 10 percent by weight No. The

linear absorption coefficients are calculated by

eS(E) = 0.93 [0.9 PmU + 0.1 mMo 1 PUMo
whereLJ

pmu = the mass absorption coefficient for U,

p Mo = the mass absorption coefficient for Mo,

AUMO, the density of the U-Mo, is taken to be 17.08 gan/cm3 after

Reference U1, p. 4. Values of the mass absorption coefficients 1M(E) are taken

from Reference 12. Thus the number of photons in each energy group escaping

frcr7 the reactor is determined.

Nitrogen Capture Gammas

B. This source is directly dependent on the number of leakage neutrons per
fission, q. The value of q is taken as 1.4 neutrons/fission (Reference 2, p. 9).

The number of Mev of nitrogen capture (N.C.) gains produced per fission, UNot

is computed as follows:

NC a air abs" aa N N

where NaI = ratio of neutron absorption in nitrogen to that in air.
0air) abs

07)N - ratio of radiative cature (N.C.) to absorption in nitrogen.
7a19

19.



7 T a average number of photons/N.C.

io a average energy of photons emitted in N.C.0

The values used in this calculation are:

0ir )abs 1.0

ca)N = i

T=

7-5 . 1.414

48=.4 = 6.44
7.53

UNC 0 0.71 Mev/fission

The distribution of gammas emitted in neutron captures in nitrogen is given

in Table IV (taken from Reference 7).

TABLE IV

Photon Emission Energies and Probabilities of Neutron Capture by Nitrogen
Energy Relative No. P

k

k , EkMev nk

1 1o.816 1.0 .o11456

2 9.156 .09 .00131

3 8.278 .19 .00277
4 7.356 .56 .00815
5 7.164 .19 .00M7

6 6.318 .90 .01310

7 5.5514 1.5 .021.84
8 5.287 2.3 .03349

9 4.485 .8 .01165

Total 7.53

9
nkEk 4 81876 NHv
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n (.71)
Pk = -= No. of photons of Energy Ek per fission

The number of photons, Pk' of energy Ek is then assigned to the median energy

Ei of the particular energy group in which the energy Ek fails as indicated

in Table III.

The nitrogen capture gammas are treated as a point source positioned at

the reactor center. This approximation is justified on the basis that in

this calculation we are only interested in the dose at 1000 yards or more and

the great majority of all neutrons are absorbed well within this distance.

C. Composite Gamma Dose

The number of gammas in each of 19 energy ranges between 0-i1 Mev,

ni(comp) = ni, is determined by adding the contributions from fission gammas

and N.C. gammas. The values of ni are listed in Table III. Also listed in

Table III are values of r(x,Ei) = ri which is the energy in Mev deposited per

cm3 in air at a distance x in yards from a source of one photon of energy .
Values of ri are given in Reference 7 and are calculated by the formula

r B riE i" exp(-p.,x)
ri = 4i•L-xix

where Bri is the dose buildup factor in air for photons of energy Ei, Pi is the

linear absorption coefficient not including compton scattering component, Pi

is the total linear absorption coefficient including the compton scattering

component, and x is the distance from the source in cm. The buildup factors

are taken from Reference 7 as before. The air density for the g

calculations is taken as 1.205 gn/l rather than 1.181 gms/l since data are

already available at 1.205 gm/l. This small difference will result in very

little inaccuracy of the final results.

From Table III, we see that

n nir(1000, Ei) = 3.13 x lo'1T Mev/cm3 - fission
i

and ni nr (1500El)= 3.79 x 10"18 4ev/cm3-fission

21



Using the conversion factors,

(1.6 x10-6 ergs/Mev Croentgen87 es/) I11 xi-3 M31 .1-545 x lO'3r/*ev/=3ý
6) 677e (1-T xo a

one obtains the gamaa dose per fission shown in Figure 4. For a 2 x 1017

fission pulse the gamma dose is - 0.1 mr at 1000 yds and - 0.01 mr at 1500 yards.

IV. ANALYSIS OF CALCULATION

A. Results

The gamma dose is less than 2 per cent of the neutron dose (as calculated
by Method B) for distances out to about 1500 meters. Therefore, we may neglect

the gamma dose.

The distance at which 10 mrem/wk will be accumulated from a weekly source

of 80 x 1017 fissions is 1215 yards based on calculation Method A. The corresponding

figure for Method B is 1700 yards.

The distance at which 10 rem/day will be accumulated is 195 yards by Method

A and 315 yards by Method B.

B. Factors Bearing on the Results

It is believed that the results of Method A are more correct than the

results of Method B. This contention is supported mainly by the experimental

data presented. Factors having an effect on either or both of the two methods

will be enumerated. The applicable calculational method is indicated by the

letter (s) preceding.

A,B 1. The radiation leakage from the APRA may be more (or less) per fission

than that for Godiva (which was used in these calculations).

B 2. Thermal and resonance neutrons arriving at the detector below 200 ev

energy have not been accounted for in this calculation.

AB 3. The APRA neutron leakage spectrum may not be the same as the Godiva

spectrum (which was used in these calculations).

B 4. This calculation is made for an infinite medium of air with a point

source of neutrons (and gamas). The gziund-air interface may decrease

the dose at large distances from the reactor particularly when the

reactor is operated close to the ground. Data are available for gams

22
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(Reference 13, p. 89); however, no data has been found for neutron

transmission. The non-nitrogen capture gamma dose will probably be

reduced by about a factor of 2 or 3 at a distance of 1500 meters. It
would not necessarily follow that this same figure can be used for

neutrons, however.

A,B 5. It may not be necessary to pulse the reactor once per hour.

Nevertheless, it would be desirable to be able to do so.

A,B 6. The APRA may not be capable of producing a pulse which is 13 times

as large as the nominal Godiva II pulse of 1.5 x 1016 fissions/pulse.

B 7. Excessive moisture in the air will reduce the dose level below that

calculated here. Mehl's calculations assume a constant air density

of 1.07 x 10-3 g/cm3 id th relative atom fractions of nitrogen, oxygen,

and hydrogen of 0.7778, 0.2135 and 0.0085 respectively. APG air

contains more than twice the amount of moisture as that used in Mehlts

calculations (assuming mean July conditions for APG, the atom fraction

for hydrogen is .0209).

B 8. The data used to calculate the dose by Method B are estimated to be

accurate to within + 50 per cent according to the author of Reference 4

(assuming an infinite medium of air).

A,B 9. Any attenuation of neutrons in the walls of the reactor building or

experimental equipment positioned around the reactor will reduce the

dose at distances of interest.

Of the above items, perhaps only the last one may be expected to result

in a significant change in the predicted dose.

FREDERICK H. GREGORY
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